Hierarchal order in the formation of chloroplast division machinery in the red alga Cyanidioschyzon merolae

نویسندگان

  • Nobuko Sumiya
  • Shin-ya Miyagishima
چکیده

Chloroplasts have evolved from a cyanobacterial endosymbiont and multiply by dividing. Chloroplast division is performed by constriction of the ring-like protein complex (the PD machinery), which forms at the division site. The PD machinery is composed of cyanobacteria-descended components such as FtsZ and eukaryote-derived proteins such as the dynamin-related protein, DRP5B. In the red alga Cyanidioschyzon merolae, FtsZ ring formation on the stromal side precedes PDR1 and DRP5B ring formation on the cytosolic side. In this study, we impaired FtsZ ring formation in C. merolae by overexpressing FtsZ just before FtsZ ring formation. As a result, PDR1 and DRP5B failed to localize at the chloroplast division site, suggesting that FtsZ ring formation is required for the PDR1 and DRP5B rings. We further found, by expressing a dominant negative form of DRP5B, that DRP5B ring formation begins on the nuclear side of the chloroplast division site. These findings provide insight into how the PD machinery forms in red algae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The kinesin-like protein TOP promotes Aurora localisation and induces mitochondrial, chloroplast and nuclear division.

The cell cycle usually refers to the mitotic cycle, but the cell-division cycle in the plant kingdom consists of not only nuclear but also mitochondrial and chloroplast division cycle. However, an integrated control system that initiates division of the three organelles has not been found. We report that a novel C-terminal kinesin-like protein, three-organelle division-inducing protein (TOP), c...

متن کامل

A plant-specific dynamin-related protein forms a ring at the chloroplast division site.

Chloroplasts have retained the bacterial FtsZ for division, whereas mitochondria lack FtsZ except in some lower eukaryotes. Instead, mitochondrial division involves a dynamin-related protein, suggesting that chloroplasts retained the bacterial division system, whereas a dynamin-based system replaced the bacterial system in mitochondria during evolution. In this study, we identified a novel plan...

متن کامل

Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D.

Although the nuclear genome sequence of Cyanidioschyzon merolae 10D, a unicellular red alga, was recently determined, DNA transformation technology that is important as a model plant system has never been available thus far. In this study, improved culture conditions resulted in a faster growth rate of C. merolae in liquid medium (doubling time = 9.2 h), and colony formation on gellan gum plate...

متن کامل

Defining the dynamin-based ring organizing center on the peroxisome-dividing machinery isolated from Cyanidioschyzon merolae.

Organelle division is executed through contraction of a ring-shaped supramolecular dividing machinery. A core component of the machinery is the dynamin-based ring conserved during the division of mitochondrion, plastid and peroxisome. Here, using isolated peroxisome-dividing (POD) machinery from a unicellular red algae, Cyanidioschyzon merolae, we identified a dynamin-based ring organizing cent...

متن کامل

Development of a Heat-Shock Inducible Gene Expression System in the Red Alga Cyanidioschyzon merolae

The cell of the unicellular red alga Cyanidioschyzon merolae contains a single chloroplast and mitochondrion, the division of which is tightly synchronized by a light/dark cycle. The genome content is extremely simple, with a low level of genetic redundancy, in photosynthetic eukaryotes. In addition, transient transformation and stable transformation by homologous recombination have been report...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017